FERNANDO GARCÍA REDONDO

garciaredondo.com · in garciaredondofernando

SUMMARY

Over 12 years of hands on experience on electronic systems research, focusing on HW aware algorithm optimization -TinyML HW, Computing-in-memory architectures and algorithms design for constrained devices; modeling and simulation of emerging devices.

PROFESSIONAL EXPERIENCE

ARM RESEARCH, ARM LTD.

2022 - Present Staff Research Engineer SENIOR RESEARCH ENGINEER 2018 - 2022

- HW aware algorithm optimization. Design of ultra low power MoNo MCU, a 10uW active 10nW sleep Cortex M33 running real-time KWS using 16KB of RAM.
- HW/SW Co-design for analog Compute In Memory systems based on non-volatile crossbars within MNEMOSENE project.
- · Stochastic analysis and numerical modeling of MTJ structures for MRAM memories. Compact model and circuitry design for reliable MRAM.
- · Design and implementation of AMS platform for the modeling and simulation of Intermittent Compute (IC) Systems within Triffid project.
- Design of Triffid Energy-Harvesting power control and testbed platform –including Gen2 RFID reader SDK development, RF agents, PCB and lab-equipment orchestration.
- · IP Generation and dissemination.

Universidad P. C. **ICAI**

Associate Lecturer

Associate Lecturer in Integrated Circuit Design. Course coordinator.

Universidad POLITÉCNICA DE Madrid

Postdoctoral Researcher

Design and simulation of RRAM-CMOS based circuit applications

2012-2017 Ph.D. Candidate

- Characterization of physical resistive switching devices, RRAMs.
- Compact modeling and simulation of resistive switching devices.
- RRAM-CMOS circuit design focusing on reliability and low power operation.

2010-2013 Research Grant

RTL design and implementation of radar and communication systems.

EDUCATION

Universidad
Politécnica de
Madrid

2017 Ph.D. in Electronic Systems Engineering

Resistive RAM: Simulation and Modeling for Reliable Design

MSc. in Electronic Systems Engineering 2012

2011 BSc + MSc (ABET ACCREDITED) IN TELECOMMUNICATION ENGINEERING

SELECTED RESEARCH DISSEMINATION AND IP GENERATION

 Ø AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On Analog 2021 Compute-in-Memory Accelerator

 Ø A Fokker-Planck Solver to Model MTJ Stochasticity 2021

2021 sensitivity boost

Training DNN IoT Applications for Deployment On Analog NVM Crossbars 2020

₱ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 27.2 MoNo: A performance-regulated o.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with

■ 2020 10nW sleep power

Applications of computation-in-memory architectures based on memristive devices

SPICE compact modeling of bipolar/unipolar memristor switching governed by electrical

Arm has filed 24 patent applications on which I am a named inventor, addressing CiM ML accelerators, low power systems, IC systems and NVM memories.

HONORS & AWARDS

Extraordinary Doctorate Awards, Universidad Politécnica de Madrid 2019 Degree with Honors, Final Degree Project, BSc.

2012

2019

2016 PATENTS